Copied to
clipboard

G = C42.283C23order 128 = 27

144th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.283C23, M4(2).32C23, C8○D85C2, C8(C8⋊C22), C8⋊C227C4, D8.6(C2×C4), C8.59(C2×D4), SD16.(C2×C4), C8(C8.26D4), C8.26D46C2, (C4×C8)⋊22C22, (C2×C8).395D4, C4.135(C4×D4), C8(C8.C22), C8.C227C4, C8.4(C22×C4), C4≀C218C22, Q16.6(C2×C4), C8○D419C22, C4.32(C23×C4), C22.48(C4×D4), C8⋊C441C22, C8(D8⋊C22), (C2×C8).613C23, (C2×C4).212C24, C4○D8.24C22, C4○D4.24C23, D4.14(C22×C4), C4.203(C22×D4), Q8.14(C22×C4), C8(M4(2).C4), C82M4(2)⋊10C2, C8.C412C22, C8(C42⋊C22), D8⋊C22.9C2, M4(2).13(C2×C4), M4(2).C415C2, C42⋊C2221C2, C23.110(C4○D4), (C22×C4).931C23, (C22×C8).442C22, C42⋊C2.301C22, (C2×M4(2)).359C22, C2.72(C2×C4×D4), (C2×C8○D4)⋊27C2, C4○D4.23(C2×C4), C22.3(C2×C4○D4), (C2×D4).179(C2×C4), (C2×C4).1413(C2×D4), (C2×C4).72(C22×C4), (C2×Q8).162(C2×C4), (C2×C4).269(C4○D4), (C2×C4○D4).295C22, SmallGroup(128,1687)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.283C23
C1C2C4C2×C4C22×C4C22×C8C2×C8○D4 — C42.283C23
C1C2C4 — C42.283C23
C1C8C22×C8 — C42.283C23
C1C2C2C2×C4 — C42.283C23

Generators and relations for C42.283C23
 G = < a,b,c,d,e | a4=b4=1, c2=b2, d2=b, e2=a2, ab=ba, cac-1=a-1b-1, ad=da, eae-1=ab2, bc=cb, bd=db, be=eb, cd=dc, ece-1=a2b-1c, de=ed >

Subgroups: 340 in 228 conjugacy classes, 138 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4×C8, C8⋊C4, C4≀C2, C8.C4, C42⋊C2, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C2×M4(2), C8○D4, C8○D4, C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C82M4(2), C42⋊C22, M4(2).C4, C8○D8, C8.26D4, C2×C8○D4, D8⋊C22, C42.283C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C42.283C23

Smallest permutation representation of C42.283C23
On 32 points
Generators in S32
(1 14 21 27)(2 15 22 28)(3 16 23 29)(4 9 24 30)(5 10 17 31)(6 11 18 32)(7 12 19 25)(8 13 20 26)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 13 5 9)(2 14 6 10)(3 15 7 11)(4 16 8 12)(17 26 21 30)(18 27 22 31)(19 28 23 32)(20 29 24 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16 21 29)(2 9 22 30)(3 10 23 31)(4 11 24 32)(5 12 17 25)(6 13 18 26)(7 14 19 27)(8 15 20 28)

G:=sub<Sym(32)| (1,14,21,27)(2,15,22,28)(3,16,23,29)(4,9,24,30)(5,10,17,31)(6,11,18,32)(7,12,19,25)(8,13,20,26), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,13,5,9)(2,14,6,10)(3,15,7,11)(4,16,8,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,21,29)(2,9,22,30)(3,10,23,31)(4,11,24,32)(5,12,17,25)(6,13,18,26)(7,14,19,27)(8,15,20,28)>;

G:=Group( (1,14,21,27)(2,15,22,28)(3,16,23,29)(4,9,24,30)(5,10,17,31)(6,11,18,32)(7,12,19,25)(8,13,20,26), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,13,5,9)(2,14,6,10)(3,15,7,11)(4,16,8,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,21,29)(2,9,22,30)(3,10,23,31)(4,11,24,32)(5,12,17,25)(6,13,18,26)(7,14,19,27)(8,15,20,28) );

G=PermutationGroup([[(1,14,21,27),(2,15,22,28),(3,16,23,29),(4,9,24,30),(5,10,17,31),(6,11,18,32),(7,12,19,25),(8,13,20,26)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,13,5,9),(2,14,6,10),(3,15,7,11),(4,16,8,12),(17,26,21,30),(18,27,22,31),(19,28,23,32),(20,29,24,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16,21,29),(2,9,22,30),(3,10,23,31),(4,11,24,32),(5,12,17,25),(6,13,18,26),(7,14,19,27),(8,15,20,28)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F···4M8A8B8C8D8E···8J8K···8V
order122222222444444···488888···88···8
size112224444112224···411112···24···4

44 irreducible representations

dim11111111112224
type+++++++++
imageC1C2C2C2C2C2C2C2C4C4D4C4○D4C4○D4C42.283C23
kernelC42.283C23C82M4(2)C42⋊C22M4(2).C4C8○D8C8.26D4C2×C8○D4D8⋊C22C8⋊C22C8.C22C2×C8C2×C4C23C1
# reps11214421884224

Matrix representation of C42.283C23 in GL4(𝔽17) generated by

0080
0009
0900
9000
,
4000
0400
0040
0004
,
0004
00130
01300
4000
,
15000
01500
00150
00015
,
0020
00015
0200
2000
G:=sub<GL(4,GF(17))| [0,0,0,9,0,0,9,0,8,0,0,0,0,9,0,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,0,0,4,0,0,13,0,0,13,0,0,4,0,0,0],[15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[0,0,0,2,0,0,2,0,2,0,0,0,0,15,0,0] >;

C42.283C23 in GAP, Magma, Sage, TeX

C_4^2._{283}C_2^3
% in TeX

G:=Group("C4^2.283C2^3");
// GroupNames label

G:=SmallGroup(128,1687);
// by ID

G=gap.SmallGroup(128,1687);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,2019,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b^2,d^2=b,e^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^-1,a*d=d*a,e*a*e^-1=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^2*b^-1*c,d*e=e*d>;
// generators/relations

׿
×
𝔽